HP Confidential – Prepared Exclusively for..... customer pursuant to the Master Testing & Feedback Agreement. Not to be distributed or published externally.

HP 3D High Reusability PA 12 Glass Beads

Materials Technical Fact Sheet

General Properties

Common information for all print modes

Category	Measurement	Value	Method	
General Properties	Powder melting point (DSC)	186 °C/367 °F	ASTM D3418	
	Particle size	58 µm	ASTM D3451	
	Bulk density of powder	0.48 g/cm ³	ASTM D1895	
		0.017 lb/in ³		
	Density of parts	1.3 g/cm ³	ASTM D792	
		0.047 lb/in ³		
Reusability	Refresh ratio for stable performance	30%		
Environmental conditions	Recommended relative humidity	50-70% RH		

Balanced print mode

Technical specifications¹

Category	Measurement	Specimen	Value	Method
Mechanical properties	Tensile strength, max load, ² XY, XZ, YX, YZ	Type V	30 MPa/4351 psi	ASTM D638
		Type I	30 MPa/4351 psi	ASTM D638
	Tensile strength, max load, ² ZX, ZY	Type V	30 MPa/4351 psi	ASTM D638
		Type I	30 MPa/4351 psi	ASTM D638
	Tensile modulus,² XY, XZ, YX, YZ	Type V	2500 MPa/363 ksi	ASTM D638
		Type I	2500 MPa/363 ksi	ASTM D638
	Tensile modulus, ² ZX, ZY	Type V	2700 MPa/392 ksi	ASTM D638
		Type I	2700 MPa/392 ksi	ASTM D638
	Elongation at break, ² XY, XZ, YX, YZ	Type V	10%	ASTM D638
		Type I	9%	ASTM D638
	Elongation at break, ² ZX, ZY	Type V	10%	ASTM D638
		Type I	7%	ASTM D638
	Elongation at yied, ² XY, XZ, YX, YZ	Type V	9%	ASTM D638
		Type I	8%	ASTM D638
	Elongation at yied, ² ZX, ZY	Type V	9%	ASTM D638
		Type I	6%	ASTM D638
	Flexural modulus, ³ XY, XZ, YX, YZ		2400 MPa/348 ksi	ASTM D790
	Flexural modulus, ³ ZX, ZY		2700 MPa/392 ksi	ASTM D790
	Flexural strength (@ 5%),³ XY, XZ, YX, YZ		57.5 MPa/8339 psi	ASTM D790
	Flexural strength (@ 5%),³ ZX, ZY		65 MPa/9427 psi	ASTM D790
	Charpy impact notched (@23°C/73.4°F), XY, XZ, YX, YZ, ZX, ZY		2.2 kJ/m2	ISO 179-1/1eA
	Charpy impact notched (@-20°C/-4°F), XY, XZ, YX, YZ, ZX, ZY		2.1 kJ/m2	ISO 179-1/1eA
	Charpy impact notched (@-40°C/-40°F), XY, XZ, YX, YZ, ZX, ZY		1.8 kJ/m2	ISO 179-1/1eA
	Izod impact notched (@3.2 mm, 23°C/73.4°F), XY, XZ, YX, YZ, ZX, ZY		3 kJ/m2	ASTM D256 Test Method A
	Izod impact notched (@3.2 mm, -20°C/-4°F), XY, XZ, YX, YZ, ZX, ZY		2.9 kJ/m2	ASTM D256 Test Method A
	Izod impact notched (@3.2 mm, -40°C/-40°F), XY, XZ, YX, YZ, ZX, ZY		2.7 kJ/m2	ASTM D256 Test Method A
	Izod impact notched (@10 mm, 23°C/73.4°F), XY, XZ, YX, YZ, ZX, ZY		2.7 kJ/m2	ASTM D256 Test Method A
	Shore Hardness D, XY, XZ, YX, YZ, ZX, ZY		82	ASTM D2240
Thermal properties	Heat deflection temperature (@0.45 MPa, 66 psi), XY, XZ, YX, YZ		174 °C/345 °F	ASTM D648 Test Method A
	Heat deflection temperature (@0.45 MPa, 66 psi), ZX, ZY		175 °C/347 °F	ASTM D648 Test Method A
	Heat deflection temperature (@1.82 MPa, 264 psi), XY, XZ, YX, YZ		114 °C/237 °F	ASTM D648 Test Method A
	Heat deflection temperature (@1.82 MPa, 264 psi), ZX, ZY		120 °C/248 °F	ASTM D648 Test Method A

Stress-strain curves at different temperatures

Stress-strain curves at different temperatures. XY-YX-XZ-YZ Orientations.

Stress-strain curves at different temperatures. ZX-ZY Orientations.

Tensile strength at different temperatures

Tensile modulus at different temperatures

Elongation at break at different temperatures

Certifications

• <u>UL 94</u>

• UL 746A

Dynamic security enabled printer. Only intended to be used with cartridges using an HP original chip. Cartridges using a non-HP chip may not work, and those that work today may not work in the future. More at: hp.com/go/learnaboutsupplies.

For more information, please visit hp.com/go/3DMaterials

 The following technical information should be considered representative of averages or typical values and should not be used for specification purposes. These values are with FW TATDAG_15_18_11.69 and have been obtained from a sample of specimens printed in plots with 6% packing density. Separation between specimens in the plot was 10 mm. Modulus has been calculated using the slope of the regression line between 0.05% and 0.25% strain measured with an automatic extensometer during the entire test. Crosssection dimension measures are done using a micrometer with round ends. Conditioning according to ASTM D618 Procedure A: 48 hours after printing and unpacking of the parts at 23°C/73°F and 50% RH. Orientations defined according to ASTM F2971.

© Copyright 2018 HP Development Company, L.P.

Nothing herein should be construed as constituting an additional warranty. The only warranties for HP products and services are set forth in the express warranty statements accompanying such products and services and/or in a written agreement between you and HP. HP believes that the information herein is correct based on the current state of scientific knowledge and as the date of its publication, however, to the maximum extent permitted by law HP EXPRESSLY DISCLAIMS ANY REPRESENTATIONS AND WARRANTIES OF ANY KIND, WHETHER EXPRESS OR IMPLIED, AS TO THE ACCURACY, COMPLETENESS, NON-INFRINGEMENT, MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR PURPOSE (EVEN IF HP IS AWARE OF SUCH PURPOSE) WITH RESPECT TO ANY INFORMATION PROVIDED. Except to the extent that exclusion is prevented by law, HP shall not be liable for technical or editorial errors or omissions, and damages or losses of any kind or nature that result from the use of or reliance upon this information, which is subject to change without notice. The HP Jet Fusion 3D products have not been designed, manufactured or tested by HP for compliance with legal requirements for specific 3D printed parts and their uses, and recipients are responsible for determining the suitability of HP Jet Fusion 3D products for their uses, ensuring compliance with applicable laws and requirements for specific as the state other safety or performance considerations may arise when using, handling or storing the product.

