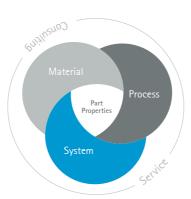


EOS NickelAlloy IN718 High Temperature Strength and Corrosion Resistance

EOS NickelAlloy IN718 is a precipitation-hardening nickel-chromium alloy that is characterized by having good tensile, fatigue, creep and rupture strength at temperatures up to 700 °C (1.290 °F). Parts built from EOS NickelAlloy IN718 can be easily post-hardened by precipitation-hardening heat treatments.

Main Characteristics:

- Good tensile, fatigue, creep and rupture strength at temperatures up to 700 °C (1.290 °F)
- Parts are easily precipitation hardened
- Parts can be machined, spark-eroded, welded, micro shot-peened, polished and coated in both as-built and age-hardened states


Typical Applications:

- → Gas turbine components
- → Instrumentation parts
- → Power industry parts
- Process industry parts

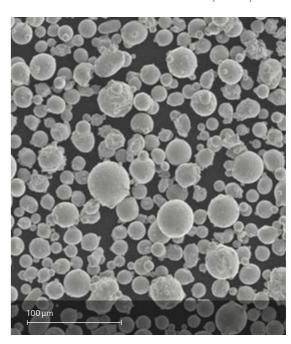
The EOS Quality Triangle

EOS uses an approach that is unique in the AM industry, taking each of the three central technical elements of the production process into account: the system, the material and the process – together simply described as the Quality Triangle. EOS focuses on delivering reproducible part properties for the customer.

All of the data stated in this material data sheet is produced according to EOS Quality Management System and international standards.

Powder Properties

The chemical composition of EOS NickelAlloy IN718 is in compliance with UNS N07718, AMS 5662, AMS 5664, W.Nr 2.4668, DIN NiCr19Fe19NbMo3.


Powder chemical composition (wt.-%)

Element	Min.	Max.		
Fe		Rem.		
Ni	50.00	55.00		
Cr	17.00	21.00		
Nb	4.75	5.50		
Mo	2.80	3.30		
Ti	0.65	1.15		
Al	0.20	0.80		
Со	-	1.00		
Cu	-	0.30		
Si	-	0.35		
Mn	-	0.35		
Та	-	0.05		
С	-	0.08		
S	-	0.015		
P	-	0.015		
В	-	0.006		
Pb	-	0.0005		
Se	-	0.0020		
Bi		0.00003		

Powder particle size

Generic particle size	
distribution	20-55 μm

SEM picture of EOS NickelAlloy IN718 powder.

Process Information

EOS M 290
IN718 Performance 2.0
IN718_040_PerformanceM291_2xx
EOSPRINT 1.7 or newer, EOSPRINT 2.6 or newer, EOSYSTEM 2.9 or newer
9011-0020
EOS HSS Blade
EOS Grid Nozzle
Argon
63 μm

Additional information				
Layer thickness	40 μm			
Volume rate	4.2 mm³/s			
Min. wall thickness	Typical 0.3 - 0.4 mm			

Heat Treatment

Heat treatment procedure conform to Aerospace Material Specification AMS 2774 and AMS 5662. As manufactured microstructure for additively manufactured IN718 consists of gamma phase (y). Heat treatment for IN718 is required to produce desired microstructure and part properties (gamma double prime precipitates, y"). Heat treatment is also used to relieve stresses.

Step 1:

Solution Annealing: hold at 954 °C (1.750 °F) for 1 hour per 25 mm (0.98 inch) of thickness, air (/argon) cool

Step 2:

part properties (gamma double prime precipitates, γ"). Heat treatment is also used to relieve stresses.

Ageing Treatment: hold at 718 °C (1.325 °F) 8 hours, furnace cool to 621 °C (1.150 °F) and hold at 621 °C (1.150 °F) for total precipitation time of 18 hours, air (/argon) cool

Chemical and Physical Properties of Parts

Heat treated microstructure. Etched according to ASTM E407-07.

Defects	Result	Number of samples	
Average defect percentage	0.03 %	10	
Density, ISO3369	Result	Number of samples	
Average density	min 8.15 g/cm ³	10	

Mechanical Properties in Heat Treated State

Tensile properties heat treated (acc. AMS 2774 and AMS 5662)

	Yield strength R _{p0.2} [MPa]	Tensile strength R _m [MPa]	Elongation at break A [%]	Number of samples
Vertical	1.145	1.375	17	54
Horizontal	1.240	1.505	12	26

Hardness as per ISO 6508-1

Hardness, HRC 47 Number of samples 45

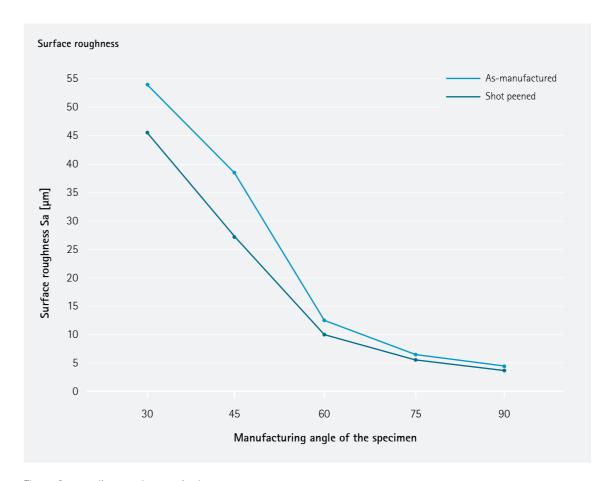
Hardness as per DIN EN ISO 6506-1:2014

Hardness, HB	466
Number of samples	10

^{*}T90: Tolerance intervals provide upper and lower bounds where 90 % of the population falls with 95 % confidence. Tolerance intervals are based on validation data / QA statistics and are not directly transferrable to other systems.

Tensile properties as manufactured

	Yield strength R _{p0.2} [MPa]	Tensile strength R _m [MPa]	Elongation at break A [%]	Number of samples
Vertical	650	970	32	41
Horizontal	800	1090	25	36


Additional Data

Coefficient of Thermal Expansion ASTM E228-17

Temperature	25-100 °C	25-200 °C	25-300 °C	25-400 °C	25-500 °C	25-600 °C	25-700 °C
СТЕ	13,1*10 ⁻⁶ /K	13,7*10 ⁻⁶ /K	14,1*10 ⁻⁶ /K	14,4*10 ⁻⁶ /K	14,7*10 ⁻⁶ /K	15,0*10 ⁻⁶ /K	15,5*10 ⁻⁶ /K

Surface Roughness

Horizontal surface	As-manufactured Sa 4.5 μm	Shot Peened Sa 3.8 µm
Vertical and angled surf		

The surface quality was characterized by optical measurement method according to internal procedure.
The 90 degree angle corresponds to vertical surface.

Headquarters

EOS GmbH Electro Optical Systems Robert-Stirling-Ring 1 D-82152 Krailling/Munich Germany Phone +49 89 893 36-0 info@eos.info

www.eos.info

in EOS

y EOSGmbH

© EOS.global

■ EOSGmbH

#ShapingFuture

Further Offices

EOS France Phone +33 437 497 676

EOS Greater China Phone +86 21 602 307 00

EOS India Phone +91 443 964 8000

EOS Italy Phone +39 023 340 1659

EOS Japan Phone +81 45 670 0250

EOS Korea Phone +82 2 6330 5800

EOS Nordic & Baltic Phone +46 31 760 4640

EOS North America Phone +1 877 388 7916

EOS Singapore Phone +65 6430 0463

EOS UK Phone +44 1926 675 110

Status 02/2020 (V1.0, CR696, 2020-02)

EOS is certified according to ISO 9001. EOS® and EOSPRINT® are registered trademarks of EOS GmbH in some countries. For more information visit www.eos.info/trademarks.

Cover: This image shows a possible application.

The quoted values refer to the use of this material with above specified type of EOS DMLS system, EOSYSTEM and EOSPRINT software version, parameter set and operation in compliance with parameter sheet and operating instructions. Part properties are measured with specified measurement methods using defined test geometries and procedures. Further details of the test procedures used by EOS are available on request. Any deviation from these standard settings may affect the measured properties. The data correspond to EOS knowledge and experience at the time of publication and they are subject to change without notice as part of EOS' continuous development and improvement processes. EOS does not warrant any properties or fitness for a specific purpose, unless explicitly agreed upon. This also applies regarding any rights of protection as well as laws and regulations.

